
UT Austin - Neural Networks Fall 2021

Group 10: SuperTuxKart ice hockey
Marlowe Johnson, Pedro Silva, Austin Aurelio, Luis Kaiser

December 6, 2021

Abstract

We present a deep learning residual network
model (ResNet) with a dagger implementation
as a base agent to successfully learn control
policies for the state-based approach using
reinforcement learning. The model is a ResNet,
trained with the reinforce algorithm, whose
input is the player and the soccer state, and
the output is a value for braking, steering and
accelerating. The DAGGER algorithm is used
to pretrain our model imitating the Jurgen
expert to provide a pre-trained base. The
hyperparameters of all deep learning models
were optimized separately using grid search.
We find that our agent outperforms all provided
agents on the local grader.

Keywords
deep reinforcement learning, DAGGER, state
based

1 Setup

In the following, we are going to (i) discuss the
model architecture and hyperparameters and (ii)
explain the data generation.

1.1 Model

To ease the training of deep networks, we used a
ResNet architecture with Mish activation func-
tion and 15 ResNet blocks with exponentially
growing layer size to the power of two. As an in-
put to our model, we extracted features of player
state and puck state like Jurgen did in his code.
The idea behind this was that since we use Ju-
rgens agent as an expert, we should have the
same inputs. Expanding the feature dimension,
for example by including the opponent state, did
not change the performance, but was especially
more costly while training. Overall, the features
tensor includes both kart centers, the kart an-
gle, the kart to puck angle, the center of both
goal lines, the difference between the kart angle

and the kart to puck angle, both puck locations
and the difference between the puck centers and
both goal lines.

An extensive grid search is used to fine tune
the hyperparameters. It follows that the Adam
Optimizer with weight decay, a learning rate
of .001 and a batch size of 512 achieves the
best results while training. Using Dropout has
proven to be helpful in our model architecture
to better generalize, while adding a learning rate
scheduler however did not improve the training
progress. Changing the activation function from
ReLU to Mish reduced the loss slightly.

For acceleration, we treated the problem as
regression. We used the SmoothL1 loss func-
tion since this gave us the most stable training
results. Any acceleration values outside of the
range [0, 1] are clipped to 0 or 1. For steering
and braking we treated the problem as a classi-
fication problem, we used the BCE with logits
loss and progragated the outputs of the model
through a sigmoid function to distribute the val-
ues from 0 to 1. Specifically for steering, the two
possible classifications are 0, which we map to a
steering of -1, and 1, which we map to a steering
of 1. The sum of the individual losses is then
back-propagated through the network. In terms
of braking, our model brakes if the activation
value is below 0.5, and does not if the value is
above.

Since Jurgens algorithm uses only one model
for both karts and we are imitating his policy,
we decided to train only one neural network. On
one hand, this results in a model that is easier
and faster to train, while on the other hand it is
not possible to train different policies.

1.2 Data generation and Training

For both learning algorithms, our data is gen-
erated in the training loop by letting our agent
play against the provided agents from the teach-
ing assistants (TA’s). Jurgen’s agent is used as
an expert for DAGGER, as well as the oppo-
nent for deep reinforcement learning (DRL). Our

1



model scored the fewest goals against Geoffrey’s
agent, because of which we decided to change the
distribution of the TA’s agents we play against.

For data augmentation and diversity, we used
a random ball initialization and velocity of the
puck. Since the puck starts at [0,0] after a goal is
scored, our games only last one goal or till 1000
frames have passed. Furthermore, we randomly
select the opponent for our agent to play against
from a pool of agents consisting of the provided
TA agents (Jurgen, Yoshua, Yann, etc.) as well
as our own “dummy” agent which does not do
anything. We found that including this addi-
tional “dummy” agent allowed our agent’s policy
to quickly converge to one that is able to score
goals. This is because against a “dummy” oppo-
nent, the agent is in a position where it’s only
concern is to score a goal instead of having to
consider positions where it may have to be de-
fensive due to adversarial agents. Since the team
id changes when grading, we switch sides after
each epoch. This gives us more stable training
results and a superior generalization.

Our training is done on colab with T4 and
P100 GPUs. Overall, our final DAGGER algo-
rithm took one hour to train, and the reinforce-
ment learning optimization around half an hour.

2 Development Process
In recent years, different variants of DRL have
become state-of-the-art for learning optimal
strategies in video games. These successes mo-
tivate our approach to reinforcement learning.

2.1 Deep reinforcement learning
approach

In the early stages of our project, our goal was
to implement a DRL agent that first trains by
playing against the TA agents, and then plays
against itself to surpass their performance. The
initial reward function consisted of the distance
between the puck and the goal, and the goals
scored per game. Since the pitch is 64.5*2 long,
we chose to reward our agent with 64.5*2 if he
scores a goal; the distance is a float value of the
distance.

This simple setup did not learn as desired:
The main reason was that after a couple of
epochs, the model got stuck in corners and could
not optimize its policy well enough to overcome
these mistakes. Besides, games ended fast be-
cause the TA agents scored a goal quickly, not
giving our agent enough time to explore the en-
vironment. Figure 1 shows two common failure
scenarios while training. The first two pictures
show the agent moving back and forth at their

initial location. This behavior corresponds to
the beginning of our training algorithm. The
main reason for this is that the activations for
braking and acceleration are almost random in
the first epochs, which leads to a very unstable
behavior and not enough exploration. The last
two pictures correspond to the case where both
agents steer heavily to the right and crash into
the wall.

Therefore, in order to start training our rein-
forcement learning algorithm, we implemented a
dummy agent that does not perform any actions.
This has shown to be helpful to surpass some of
the initial problems we had to get reinforcement
learning to work, since our agent can now learn
to drive towards the puck without interference.
Furthermore, we changed the setup to only one
agent playing which speeds up training time and
makes the inputs to the model more similar.

The next step was to modify the reward func-
tion. The main issue with the initial approach
of only using the distance between the puck and
the goal was that the agent could not learn to
first drive towards the puck to hit it towards
the goal. By learning to drive towards the puck,
the agent learns appropriate steering and accel-
eration to perform this simple task. Therefore,
we began training the agent only with reward
based on the distance between it and the puck.
After that, we thought that adding the distance
between the puck and the goal should give him
the incentive to hit the puck from the right an-
gle. After training for some time, it was clear
that this approach would not work: The agent
could not properly learn how to hit the puck
to score a goal, and got confused when he hit
the puck. We suspect that even with a suffi-
cient reward function, it would take many many
training iterations for the agent to learn a sensi-
ble policy. Our solution to this problem was to
somehow provide a decent initialization to run
reinforcement learning on top of. With a decent
initialization, the agent would already know how
to receive reward, and would easily be able to
maximize it’s reward by improving it’s policy.

After looking through the class code, we then
decided to implement a version of imitation
learning algorithm to provide a DAGGER pre-
trained network giving us a base we can further
optimize with DRL.

2.2 DAGGER

In order to overcome mismatches in the train-
ing and testing distribution, we decided to im-
plement DAGGER instead of vanilla imitation
learning. The expert we imitated is Jurgen’s
because he has proven to be the best in compar-

2



Figure 1: Example game state from the Super-
TuxKart ice hockey with a state based agent
using deep reinforcement learning. The blue
agents (two karts on top of each pitch) use our
model, while the red agents (two karts on the
bottom) use Jurgens model. The images show
two common failure cases when training the
model with deep reinforcement learning.

ison to all other TA’s agents. For that reason,
we used ‘sarah the racer’ as a kart to have the
same setup as Jurgens algorithm.

For the first epoch, we allow the Jurgen expert
to play a game, and collect the data it provides.
Initially, we used our aforementioned “dummy”
agent as the opponent for this first game because
we wanted our agent to quickly learn to drive
towards the puck and attempt to score a goal
right at the beginning of the game. Once this
behavior started to become apparent, we then
randomized the opponents as mentioned before.
The data for this initial game is saved into our
dataset to be used in future epochs.

For the rest of the epochs, we begin to use
DAGGER. Instead of having the Jurgen play the
game, we allow our agent to play the game. For
every state that our agent encounters, we collect
the action that Jurgen would have done. We
append this new data into our dataset to be used
in future epochs.

As we continue training the agent, our data
is aggregated in our dataset and we use random
batches to shuffle our data. This leads to an un-
stable behavior of the loss in the beginning of
the training loop, and a convergence to a value
around .17 after 200 epochs. We noticed that
our loss plateaus first at 1.3, and then drops re-
markably after around 20 epochs. This led us to
modify the hyperparameters such as the learn-

ing rate (i.e. scheduling), the optimizer and the
batch size, as well as the model architecture in-
cluding the hidden layer size and the activation
function. Besides, we noticed that the model
begins to win more than half of the games after
the loss is below .2.

In Figure 2, we can see the progress and be-
havior of our DAGGER model when playing
against Jurgen’s agent. The pictures indicate
that the model is able to successfully steer be-
hind the ball and hit it at a good angle. In addi-
tion, the last two pictures show that the model
proves to be robust in unusual scenarios, e.g.
the opponents are closer to our own goal than
we are, or the ball is not in the center.

After 200 epochs, the performance of our
model did not improve much; therefore, we con-
tinued improving our DAGGER-trained model
by switching to DRL for further optimization as
described in class.

2.3 Combining DAGGER and
deep reinforcement learning

The main idea was that using DRL, our agent
could potentially learn to be better than the ex-
pert (Jurgen) it imitated. We first let our model
play against Jurgen’s agent. For our reward
function, we decided not to include the puck dis-
tance as our agent already knew to drive up to
the puck. We chose to give rewards based solely
on the goals as this is what we want to optimize,
while keeping the policy simple.

After some iterations of DRL, we found that
the agent did not improve all that much and
sometimes even became worse. We believe that
the problem is that giving rewards only based
on goals scored is too general for the agent to
learn anything useful. This is why we gradually
changed the reward function as described above
without any remarkable improvements. Perhaps
a better reward function would have yielded bet-
ter results in addition to using a modification to
reinforce such as PPO or Q-learning.

Another hypothesis as to why reinforcement
learning did not help our imitation learning
agent is because it causes divergence from the
learned policy. Because our training examples
during imitation learning are frame-by-frame,
the policy is learned based only on the current
state and is not aware of a concept of reward in
the future.

3 Discussion

Our model can be further optimized in many dif-
ferent ways. First, we could do random search,

3



Figure 2: Example game state from the Super-
TuxKart ice hockey with a state based agent us-
ing the DAGGER algorithm. The pictures show
the improvement to Figure 1, especially the suc-
cessfull steering and align of the kart with the
puck and the center of the goal line.

instead of grid search, to fine tune the hyperpa-
rameters of our model. This would definitely im-
prove our models performance, leading to a bet-
ter and more stable training progress. By mak-
ing the model deeper, e.g. adding more ResNet
blocks, this may allow us to input more fea-
tures to our model. However, we found out that
having a larger model exceeds the allowed file
size on Canvas. Second, playing against further
agents would obviously improve our reinforce-
ment learning agent. E.g. by implementing an
evolutionary agent, we would have an additional
agent we can play against, which uses another
training algorithm than all previous agents. Us-
ing the evolutionary learning model as a base,
or further optimizing our final model could have
improved the performance.

Regarding optimizations for DRL, different
reward functions enable the karts to learn mul-
tiple policies; one agent could be rewarded for
playing more defensively, e.g. hitting the puck
away from our own goal or being punished for
receiving goals, while the other agent focuses on
scoring goals. Another way to approach this is-
sue is to first train the DAGGER algorithm with
the “dummy” agent, and then use reinforcement
learning to optimize the policy. This can then
be done similarly for playing against the TA’s
agents.

During training DAGGER, we ran into re-
source distribution problems: We could not run
a match on the GPU, so we decided to train on
CPUs. However, this would lead to time outs on
the grader. After a lot of debugging, we found
out that the problem was that the model has
a warm up period during the first call to for-
ward after it is loaded from a .pk file. Because
of this, the first call to our act function was tim-
ing out, and there was some logging code in the
check function that used division by the itera-
tion number. Because this was the first call to
act, we were getting a division by zero error.
Eventually we found out that if we ignored this
logging by setting the iteration number to 1, the
training would work fine on the GPU or CPU.

4 Summary
This paper introduced our DAGGER base
model and a DRL algorithm to master difficult
control policies for the SuperTuxKart ice hockey
computer game using states as an input. We
have presented the hyperparameter selection for
our model architecture and setup, as well as the
obstacles we encountered during training. We
have explained our solutions and discussed fur-
ther optimizations.

4


	Setup
	Model
	Data generation and Training

	Development Process
	Deep reinforcement learning approach
	DAGGER
	Combining DAGGER and deep reinforcement learning

	Discussion
	Summary

